If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+2x-336=0
a = 2; b = 2; c = -336;
Δ = b2-4ac
Δ = 22-4·2·(-336)
Δ = 2692
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2692}=\sqrt{4*673}=\sqrt{4}*\sqrt{673}=2\sqrt{673}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{673}}{2*2}=\frac{-2-2\sqrt{673}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{673}}{2*2}=\frac{-2+2\sqrt{673}}{4} $
| -8(x+6)=2(x-64( | | 13x+2+5x+24+7x+7+8x-3=360 | | -4x-5=29 | | (x-10)x5=15 | | 1.4x=21 | | 1/4((2k+1)*(2k+1)+3)=2k+1 | | u/4+11=14 | | 1/2x−5+2/3x=7/6x+4 | | 5g-7+2g=3+2g | | 26=y+18 | | 8x-26÷6=x-3 | | 3z/7+4/1=-3 | | 4(p-7)=-28 | | 75=x-12 | | 3x-8=61-5x+4=1 | | 5(x-3)+3=6x+15 | | x+x-40=68 | | 2p+10=12 | | 3x-8=61-5x | | 2x+1=4,x+1= | | 15s+10=10 | | R+92=11r-98 | | 12x-6=13x-9 | | 10x-4=17x+46 | | x/0.9=3 | | x-x+40=68 | | 4(w+5)=20 | | 8x^2+6=-26x | | w3+14=15 | | p(.75)=3-4(.75) | | 1/2(4x-7)=-8x | | 70+r=140 |